حل معادلات دیفرانسیل فازی با استفاده از روشهای تحلیلی - تقریبی
thesis
- دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه
- author امیر فلاح زاده
- adviser محمد علی فریبرزی عراقی سعید عباسبندی
- publication year 1394
abstract
در این رساله معادلات دیفرانسیل معمولی و جزئی فازی با استفاده از روشهایی همچون ادومیان و آنالیز هموتوپی مورد بررسی و تجزیه و تحلیل قرار خواهد گرفت که در این راستا مفهوم اصل گسترش و فرم پارامتری اعداد فازی مورد استفاده واقع می گردد، و روشهای یادشده در حالت گسسته نیز برای معادلات دیفرانسیل فازی معرفی می شود. همچنین با استفاده از حساب تصادفی سعی خواهد شد که جواب تقریبی با بهینه ترین محاسبات حاصل گردد و از تکرارهای اضافه جلوگیری شود. در نهایت انواعی جدید از روش هم محلی جهت حل معادلات دیفرانسیل فازی مطرح خواهد گردید
similar resources
حل معادلات دیفرانسیل فازی با استفاده از برخی روشهای عددی
معادلات دیفرانسیل فازی برای مدل سازی مسایل در علوم و مهندسی بکار می رود. بسیاری از مسایل در علوم و مهندسی نیاز به حل معادله دیفرانسیل فازی که در شرایط اولیه صدق می کند، دارد. بنابراین یک مساًله مقدار اولیه فازی ظاهر می شود که باید حل گردد. بدست آوردن جواب دقیق معادله دیفرانسیل فازی که مساًله بیان شده را مدل سازی کند پیچیده است. در این پایان نامه معادلات دیفرانسیل فازی را با برخی روشهای عددی حل کر...
تقریبی از جواب معادلات انتگرال- دیفرانسیل فردهلم غیرخطی با تأخیر زمانی با استفاده از روش تیلور
در این مقاله یک روش عددی مناسب برای حل معادلات انتگرال- دیفرانسیل فردهلم غیر خطی با تأخیر زمانی ارائه شده است. روش مبتنی بر بسط تیلور می باشد. این روش معادله انتگرال- دیفرانسیل و شرایط داده شده را به معادله ماتریسی که متناظر با یک دستگاه از معادلات جبری غیر خطی با ضرایب مجهول بسط تیلور می باشد تبدیل می کند، که از حل دستگاه، ضرایب بسط تیلور تابع جواب به دست می آید. سپس با مثال هایی کارایی روش را...
full textحل تقریبی معادلات انتگرال با استفاده از روشهای طیفی
هدف اصلی در این پایان نامه بررسی یک روش طیفی برای حل معادلات انتگرال نوع دوم می باشد. روش لژاندر- هم مکانی برای حل معادلات اتگرال ولترای نوع دوم با هسته و تابع منبع اکیدا هموار و روش چپیشف- هم مکانی برای معادلات انتگرال نوع دوم با هسته منفردی ضعیف بررسی می شود. با یک آنالیز دقیق خطا مشاهده می شود که خطای عددی با آهنگ نمایی کاهش پیدا می کند. مثالهای عددی سرعت کاهش خطای آنالیز شده را ثابت می کنند...
15 صفحه اولحل معادلات دیفرانسیل ـ جبری با روشهای نیمه تحلیلی
با توجه به آن که بسیاری از مسائل فیزیک با معادلات دیفرانسیل ـ جبری مدل بندی می شوند، شایسته است که بتوان برای این مسائل جواب هایی با دقت بالا یافت. در سال های اخیر روش های عددی برای حل این معادلات به کار گرفته شده است. اما این روش ها برای مسائل با اندیس پایین مناسب هستند و برای مسائل با اندیس بالا نمی توان از آن ها استفاده کرد، پس لازم است برای این مسائل جواب هایی با دقت بالا پیدا کرد. در...
15 صفحه اولحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
full textحل معادلات دیفرانسیل فازی با استفاده از روش رانگ - کوتا
یک معادله دیفرانسیل فازی fde را با استفاده از مفهوم دیفرانسیل پریزی کلی شده قوی تفسیر می کنیم سپس سپس نشان می دهیم که با این مفهوم هر معادله دیفرانسیل فازی را می توان به یک دستگاه از معادله دیفرانسیل عادی ode تبدیل کرد سپس با حل کردن معادله دیفرانسیل عادی مرتیط دو جواب را برای معادله دیفرانسیل فازی به دست می اوریم که در ان روش تقریب رانگ کوتا کلی شده از مرتبه دو و سه بیان میکنیم و انالیز خطلی آ...
15 صفحه اولMy Resources
document type: thesis
دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023